

Verlust von Geruchs-und Geschmacksin ein typisches Covid19 Symptom? Forschungsergebnisse und Ausblick

Antje Welge-Lüssen HNO Klinik – Universiätsspital Basel

Hintergrund

Dez. 2019:

Erste Fälle von Patienten mit Pneumonien unbekannten Ursprungs, ähnlich viralen Pneumonien

²/₃ dieser waren auf demselben Fischmarkt gewesen

Hintergrund

«novel betacoronav

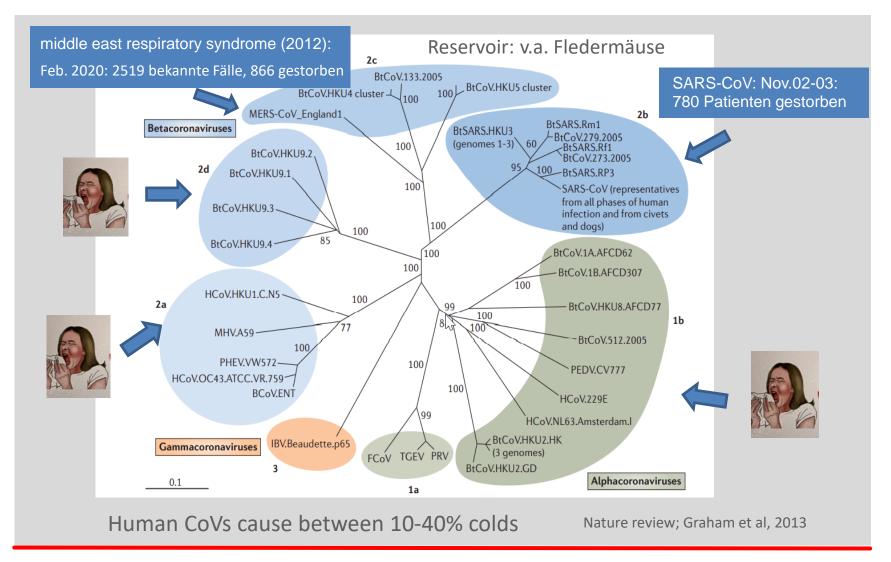
Clinical features of coronavirus in Wu

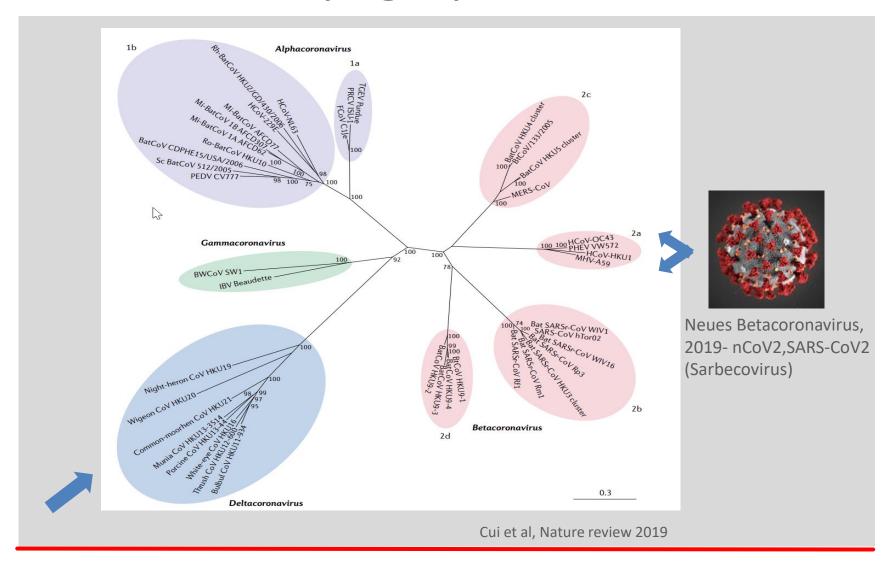
Chaolin Huang*, Yeming Wang*, Xingwang Zhenshun Cheng, Ting Yu, Jiaan Xia, Yuan V Guangfa Wang, Rongmeng Jiang, Zhanchei

Summary

Background A recent cluster of p. 2019 novel coronavirus (2019-nCoV and treatment and clinical outcom

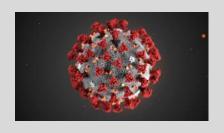
Methods All patients with suspecte


	All patients (n=41)	ICU care (n=13)	No ICU care (n=28)	p value
Characteristics				
Age, years	49.0 (41.0-58.0)	49.0 (41.0-61.0)	49-0 (41-0-57-5)	0.60
Sex				0.24
Men	30 (73%)	11 (85%)	19 (68%)	
Women	11 (27%)	2 (15%)	9 (32%)	
Huanan seafood market exposure	27 (66%)	9 (69%)	18 (64%)	0.75
Current smoking	3 (7%)	0	3 (11%)	0.31
Any comorbidity	13 (32%)	5 (38%)	8 (29%)	0.53
Diabetes	8 (20%)	1 (8%)	7 (25%)	0.16
Hypertension	6 (15%)	2 (15%)	4 (14%)	0.93
Cardiovascular disease	6 (15%)	3 (23%)	3 (11%)	0.32
Chronic obstructive pulmonary disease	1 (2%)	1 (8%)	0	0.14
Malignancy	1(2%)	0	1 (4%)	0.49
Chronic liver disease	1 (2%)	0 1/2	1 (4%)	0.68
Signs and symptoms				
rever	40 (98%)	13 (100%)	27 (96%)	0.68
Highest temperature, °C				0.037
<37·3	1(2%)	0	1 (4%)	
37-3-38-0	8 (20%)	3 (23%)	5 (18%)	
38-1-39-0	18 (44%)	7 (54%)	11 (39%)	
>39.0	14 (34%)	3 (23%)	11 (39%)	
cough	31 (76%)	11 (85%)	20 (71%)	0.35
Myalgia or fatigue	18 (44%)	7 (54%)	11 (39%)	0.38
Sputum production	11/39 (28%)	5 (38%)	6/26 (23%)	0.32
Headache	3/38 (8%)	0	3/25 (12%)	0.10
Haemoptysis	2/39 (5%)	1 (8%)	1/26 (4%)	0.46
Diarrhoea	1/28 (3%)	0	1/25 (4%)	0.66
Dyspnoea	22/40 (55%)	12 (92%)	10/27 (37%)	0.0010
Days from illness onset to dyspnoea	8.0 (5.0-13.0)	8-0 (6-0-17-0)	6-5 (2-0-10-0)	0.22
Days from first admission to transfer	5.0 (1.0-8.0)	8-0 (5-0-14-0)	1.0 (1.0-6.5)	0.0023
Systolic pressure, mm Hg	125.0 (119.0–135.0)	145.0 (123.0–167.0)	122-0 (118-5-129-5)	0.018
Respiratory rate >24 breaths per min	12 (29%)	8 (62%)	4 (14%)	0.0023



Coronavirus Phylogeny

Coronavirus Phylogeny


Namensgebung

Gemäss WHO: bis zum 11. Februar: 2019-nCoV, dann: COVID-19

Coronavirus Study Group (CSG) of the International Committee on

Taxonomy of Viruses:

Severe acute respiratory syndrome – Co(rona)V(irus) – 2

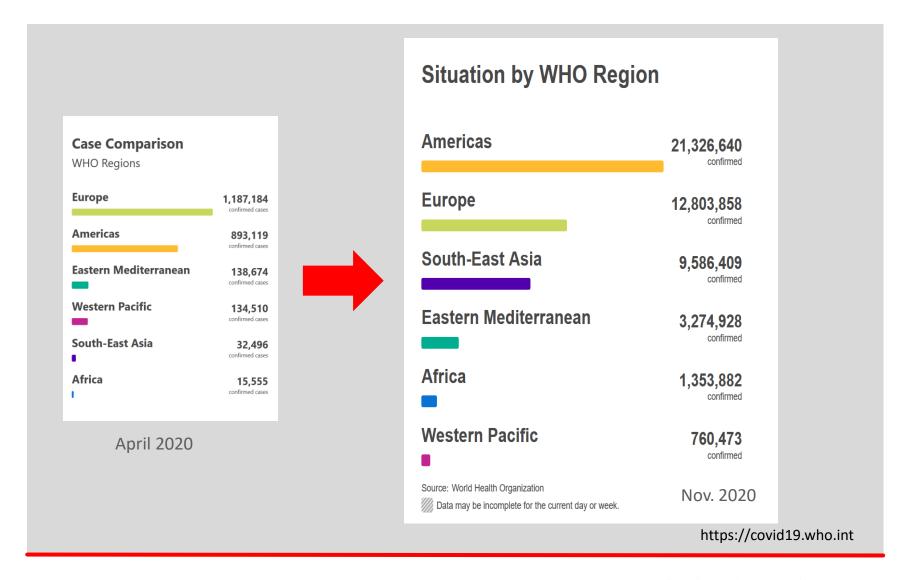
RNA Genomsequenz identifiziert: 13. Januar 60-140 nm

WHO:

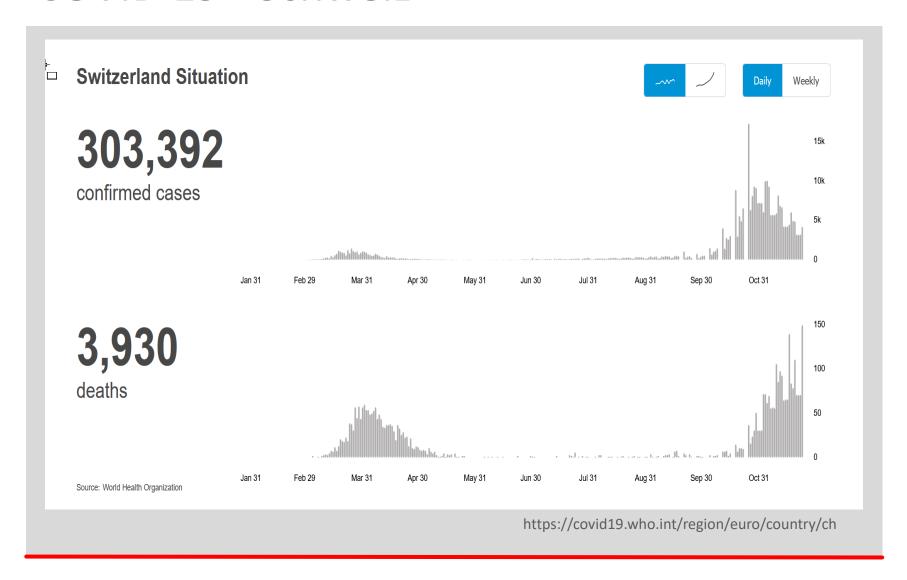
30.01.2020: Internationale Gesundheitsnotlage

28.02: Risiko: «sehr hoch»

11.03: Pandemie

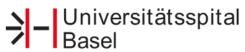


COVID 19 – spreading within 7 mts



COVID 19

COVID 19 - Schweiz



☐ JAMA Neurology | Original Investigation

Neurologic Manifestations of Hospitalized Patients With Coronavirus Disease 2019 in Wuhan, China

Ling Mao; Huijuan Jin; Mengdie Wang; Yu Hu; Shengcai Chen; Quanwei He; Jiang Chang; Candong Hong; Yifan Zhou; David Wang; Xiaoping Miao; Yanan Li, MD, PhD; Bo Hu, MD, PhD

			No. (%)			
	Characteristic		Total (N = 214)	Severe (n = 88)	Nonsevere (n = 126)	P value ^a
	Age, mean (SD), y		52.7 (15.5)	58.2 (15.0)	48.9 (14.7)	
	Age, y					
	<50		90 (42.1)	24 (27.3)	66 (52.4)	- <.001
	≥50		124 (57.9)	64 (72.7)	60 (47.6)	<.001
	Sex					
	Female	45	127 (59.3)	44 (50.0)	83 (65.9)	02
	Male		87 (40.7)	44 (50.0)	43 (34.1)	02
Ve	ervous system symptoms					
	Any		78 (36.4)	40 (45.5)	38 (30.2)	.02
	CNS		53 (24.8)	27 (30.7)	26 (20.6)	.09
	Dizziness		36 (16.8)	17 (19.3)	19 (15.1)	.42
	Headache		28 (13.1)	15 (17.0)	13 (10.3)	.15
	Impaired consciousness		16 (7.5)	13 (14.8)	3 (2.4)	<.001
	Acute cerebrovascular disease		6 (2.8)	5 (5.7)	1 (0.8)	.03
	Ataxia		1 (0.5)	1 (1.1)	0	NA
	Seizure		1 (0.5)	1 (1.1)	0	NA
	PNS		19 (8.9)	7 (8.0)	12 (9.5)	.69
	Impairment					
	Taste		12 (5.6)	3 (3.4)	9 (7.1)	.24
	Smell		11 (5.1)	3 (3.4)	8 (6.3)	.34
-	Vision		3 (1.4)	2 (2.3)	1 (0.8)	.37
	Nerve pain		5 (2.3)	4 (4.5)	1 (0.8)	.07

Clinical Infectious Diseases

CORRESPONDENCE

Self-reported Olfactor and Taste Disorders in Patients With Severe Acute Respiratory Coronavirus 2 Infection: A Cross-sectional Study

34% (von n = 59 Patienten): Schmeck- / und oder Riechstörungen

Giacomelli et al, March 2020

RESEARCH LETTER

Alterations in Smell or Taste in Mildly Symptomatic Outpatients With SARS-CoV-2 Infection

Olfactory and gustatory dysfunctions as a clinical presentation of mild-to-moderate forms of the coronavirus disease (COVID-19): a multicenter European study

Smell dysfunction: a biomarker for COVID-19

Shima T. Moein, MD, PhD¹, Seyed MohammadReza Hashemian, MD, FCCM², Babak Mansourafshar, MD², Ali Khorram-Tousi, MD¹, Payam Tabarsi, MD³ and Richard L. Doty, PhD, FAAN⁴

64% (von n = 130 Patienten): Schmeck- /und oder Riechstörungen

Spinato et al, JAMA April 2020

86% (von n = 417 Patienten): Riechstörungen, 80% Anosmie

Lechien et al, Eur Arch Oto-Rhino-Laryngol April 2020

95% (von n = 60 Patienten): anosmisch (UPSIT)

Moein et al, Int Forum Allergy & Rhinology, April 2020

Sniffing out the evidence; It's now time for public health bodies to recognize the link between COVID-19 and smell and taste disturbance*

Jerome R. Lechien^{1,2}, Claire Hopkins^{3,#}, Sven Saussez^{4,#}

¹ COVID-19 Task Force of the Young-Otolaryngologists of the International Federations of Oto-rhino-laryngological Societies (YO-IFOS)

² Department of Human Anatomy and Experimental Oncology, Faculty of Medicine, UMONS Research Institute for Health Sciences and Technology, University of Mons (UMons), Mons, Belgium

³ Guy's and St Thomas NHS Foundation Trust, London, UK

⁴ Department of Otorhinolaryngology and Head and Neck Surgery, CHU de Bruxelles, CHU Saint-Pierre, School of Medicine, Université Libre de Bruxelles, Brussels, Belgium **Rhinology 58: 4,** 402 - 403, 2020

https://doi.org/10.4193/Rhin20.159

*Received for publication:

April 15, 2020

Accepted: April 27, 2020

have contributed as co-senior authors

Krankheitssymptome

Das neue Coronavirus kann sehr unterschiedliche Krankheitssymptome zeigen.

Die häufigsten Symptome sind:

- Symptome einer akuten Atemwegserkrankung (Halsschmerzen, Husten (meist trocken), Kurzatmigkeit, Brustschmerzen)
- Fieber
- Plötzlicher Verlust des Geruchs- und/oder Geschmackssinns

Zudem sind folgende Symptome möglich:

- Kopfschmerzen
- Allgemeine Schwäche, Unwohlsein
- Muskelschmerzen
- Schnupfen
- Magen-Darm-Symptome (Übelkeit, Erbrechen, Durchfall, Bauchschmerzen)
- Hautausschläge

https://www.bag.admin.ch/bag/de.

こんにちは!

PARTICIPATE IN THE GCCR STUDIES

We are conducting world-wide scientific studies to assess the possible relationships between respiratory illness (e.g., COVID-19, influenza or the common cold) and their effects on smell & taste.

You can take two studies. A survey and a self-check with items that you can find in your home.

Click on the language of your choosing to know more!

DANSK	DEUTSCH	ENGLISH
ESPAÑOL	FRANÇAIS	ITALIANO
KISWAHILI	NEDERLANDS	NORSK
POLSKI	PORTUGUÊS	SLOVENŠČINA
SUOMI	SVENSKA	TÜRKÇE
YORÙBÁ	ČEŠTINA	ΕΛΛΗΝΙΚΑ
русский	עברית	ٱلْعَرَبِيَّةُ
ٱردُو	فارسى	मराठी
हिन्दी	বাংলা	ਪੰਜਾਬੀ
ગુજરાતી	தமிழ்	ಕನ್ನಡ
മലയാളം	中文(简体)	中文(繁體)
日本語	한국어	

Postinfektiöse Riechstörung

Akut viral bedingte endonasale Veränderungen:

Konduktive Störung

- Schwellung der Mukosa beeinträchtigt Belüftung der Nase
- Vermehrte schleimproduktion
- Veränderte Schleimzusammensetzung

Symptome:

«Nase ist zu», «Nase läuft»

Infekt klingt ab, Symptome verschwinden, Riechvermögen kehrt zurück

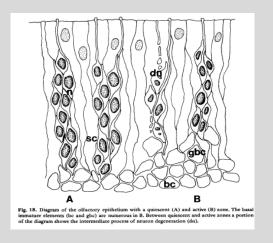
Bleibende Störungen (Anosmie) nach dem Abklingen des Infektes

Ätiologie: Rhinovirus?

https://www.datuopinion.com/rhinovirus

Adenovirus?

https://www.visual-science.com/projects



Postinfektiöse Riechstörung

Pathophysiologie:

Direkter Schaden der olfaktorischen Nervenzellen (ONZ)

Erholung (teilweise oder vollständig) möglich, aufgrund von basalen Stammzellen

Graziadei and Monti Graziadei, 1979

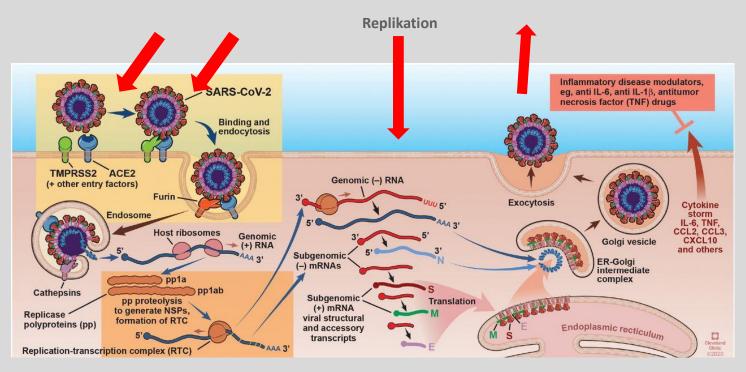
Spontanerholungsraten bei postinfektiösen Riechstörungen innerhalb von 2 Jahren

15 - 87% Alter, Dauer der Erkrankung

(Mott et Leopold 1991, Reden et al, 2006 Duncan et Seiden, 1995, Welge-Lüssen and Wolfensberger, 2006; London et al, 2008, Lee et al, 2015, Cavazzana et al, 2018)

SARS-CoV2 – typische postinfektiöse Riechstörung?

Anamnese und Verlauf bei COVID-19.....

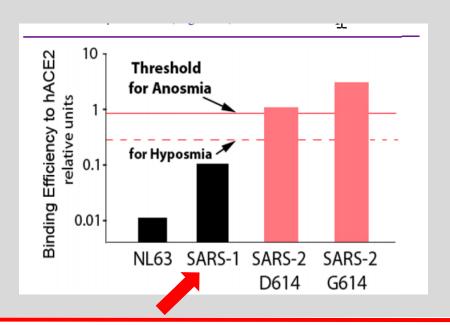

- Fehlen einer nasalen Obtruktion
- Anosmie als einziges Symptom (kann sowohl Erst- oder einziges Symptom sein)
- Mehrheit der Patienten: Vollständiger Riechverlust
- Dauer des Riechverlustes: anders (schnellere Erholung, innerhalb von Tagen bis Wochen)

....nein, scheint anders zu sein!

SARS - CoV2 Invasion in die Zelle

- Virus bindet sich an Angiotensin Converting Enzym Rezeptor 2 (ACE2)
- Spaltung durch die Serin Protease **TMPSS2** um nachfolgend die Fusion mit der Wirtsmembran zu ermöglichen

Bergmann et Silvermann, Cleveland Clinic Journal of Medicine June 2020



Lokale Entzündungsreaktion von Bedeutung

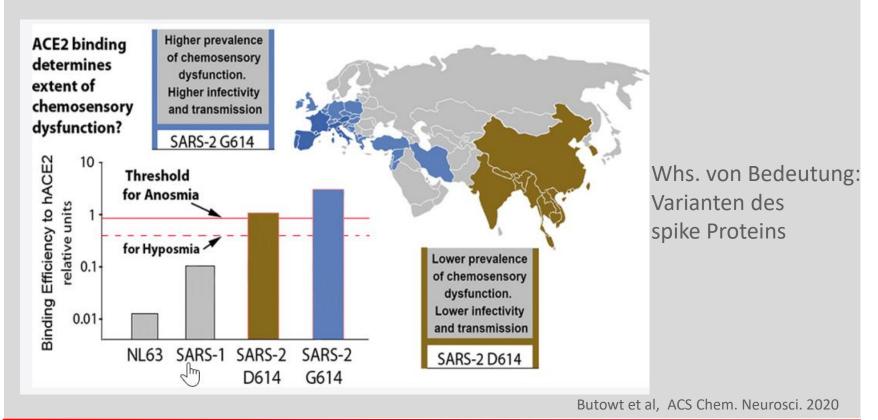
Im Unterschied zu SARS-CoV:

"Receptor-binding domain of the SARS-CoV-2 spike protein"

- Höhere Affinität zum ACE2 Rezeptor
- Andere Art der Bindung als SARS-CoV

Lokale «spike binding mode» von Bedeutung

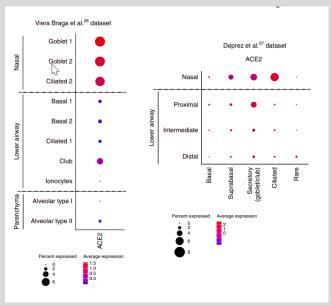
Hyposmie / Anosmie:

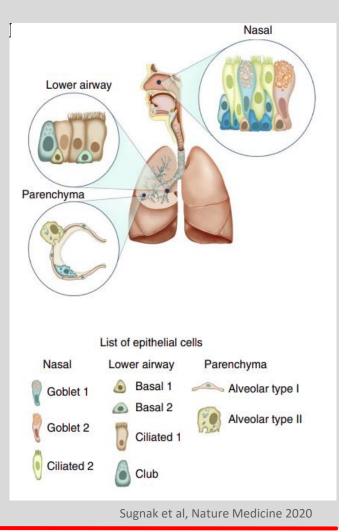

Bindung des Virus (im Bereich des olfakorischen Epithels) oberhalb einer gewissen Schwelle nötig

Butowt et al, ACS Chem. Neurosci. 2020

Unterschiedliche Prävalenz von chemosensorischen Dysfunktionen in verschiedenen Regionen der Welt – Warum?

genetische virale Faktoren, unterschiedliche genetische Faktoren der Empfänger

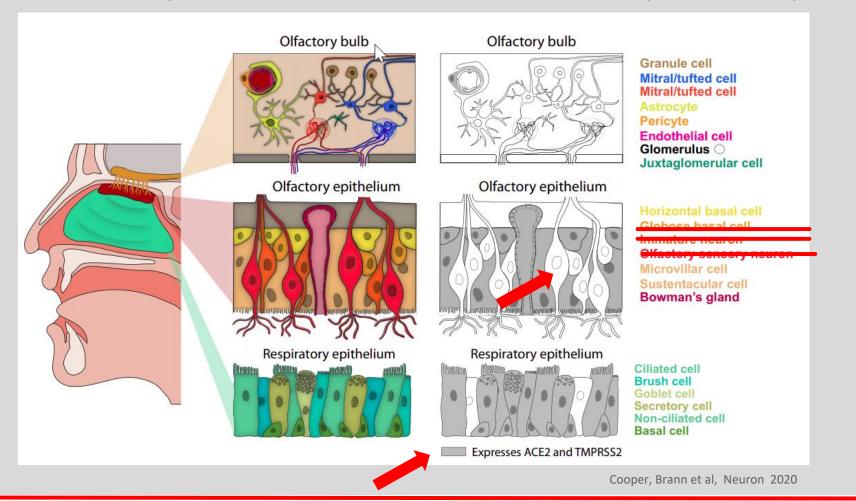


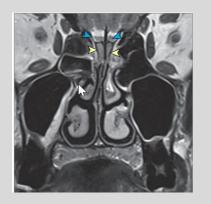

Bindungs Affinität S-protein und ACE2:

 Haupt-Determinanten der SARS-CoV Replikation und der Schwere der Erkrankung

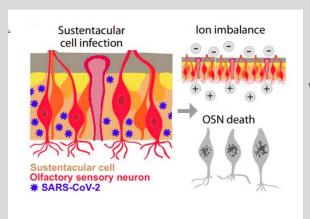
Virus Eindringen hängt ab von

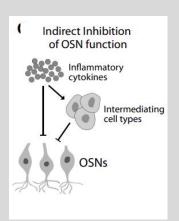
TMPRSS2 Protease Aktivität
 Gen expression von ACE2 und TMPRSS2



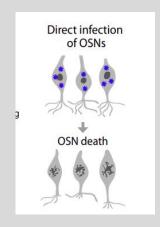


SARS - CoV2 endonasal


Keine: ACE2 Rezeptoren in ONZ, aber in den Stützzellen und im respiratorischen Epithel

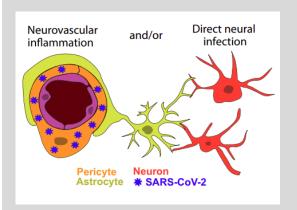

Lokalisierte Entzündung

indirekte Mechanismen



Veränderungen des Mukus, Ionen - Imbalance

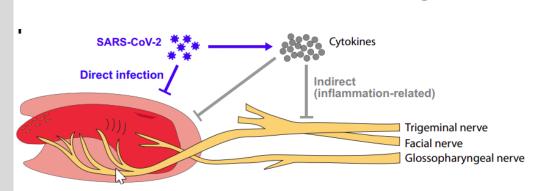
inflammatorische Zytokine


> noch nicht bewiesen

Zelltod der ORZ / Dysfunktion und Anosmia

Eliezier et al, Jama Otolaryngology, Head & Neck Surgery, Cooper, Brann et al, Neuron 2020

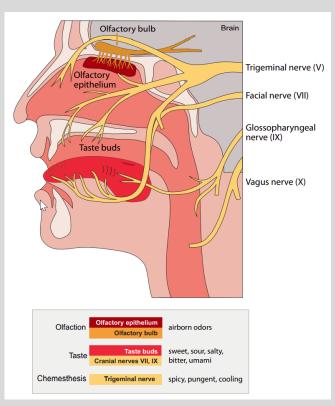
Zentraler Schaden



indirekte Mechanismen

ACE2: vasculäre Perizyten (bei Mäusen), Wahrnehmung beeinflusst

- direkt (via Veränderungen der Perfusion)
- indirekt (via Entzündungsreaktion)


Schmecken und trigeminale Funktion: separat beeinträchtigt

ACE2 expremiert von Typ III (sauer) Schmeckrezeptoren und Typ II (bitter / süss / umami) TRC

Cooper, Brann et al, Neuron 2020

Cooper et al, Neuron 2020

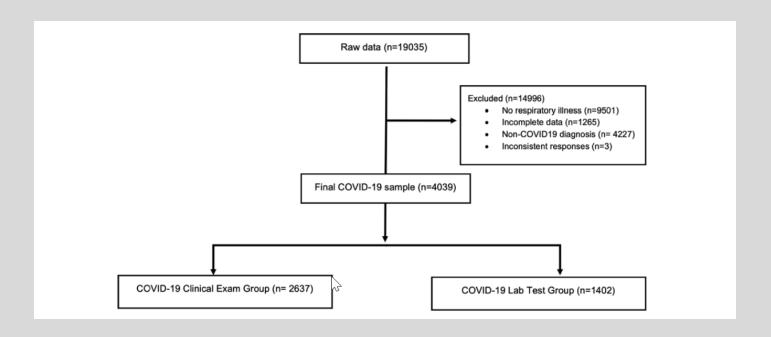
Chemical Senses, 2020, Vol XX, 1–14 doi:10.1093/chemse/bjaa041 Original Article Advance Access publication 20 June 2020

Original Article

More Than Smell — COVID-19 Is Associated With Severe Impairment of Smell, Taste, and Chemesthesis

Valentina Parma^{1,*}, Kathrin Ohla^{2,*,o}, Maria G. Veldhuizen^{3,*}, Masha Y. Niv4, Christine E. Kelly5, Alyssa J. Bakke6, Keiland W. Cooper7, Cédric Bouysset⁸, Nicola Pirastu⁹, Michele Dibattista¹⁰, Rishemjit Kaur¹¹, Marco Tullio Liuzza^{12,0}, Marta Y. Pepino¹³, Veronika Schöpf¹⁴, Veronica Pereda-Loth¹⁵, Shannon B. Olsson¹⁶, Richard C. Gerkin^{17,0}, Paloma Rohlfs Domínguez¹⁸, Javier Albayay¹⁹, Michael C. Farruggia²⁰, Surabhi Bhutani²¹, Alexander W. Fjaeldstad^{22,0}, Ritesh Kumar²³, Anna Menini²⁴, Moustafa Bensafi^{25,0}, Mari Sandell^{26,27}, Iordanis Konstantinidis²⁸, Antonella Di Pizio²⁹, Federica Genovese³⁰, Lina Öztürk³, Thierry Thomas-Danguin³¹, Johannes Frasnelli³², Sanne Boesveldt³³, Özlem Saatci³⁴, Luis R. Saraiva^{30,35,0}, Cailu Lin^{30,0}, Jérôme Golebiowski⁸, Liang-Dar Hwang³⁶, Mehmet Hakan Ozdener³⁰, Maria Dolors Guàrdia³⁷, Christophe Laudamiel³⁸, Marina Ritchie³⁹, Jan Havlícek⁴⁰, Denis Pierron⁴¹, Eugeni Roura^{42,0}, Marta Navarro⁴², Alissa A. Nolden⁴³, Juyun Lim^{44,6}, Katherine L. Whitcroft⁴⁵, Lauren R. Colquitt³⁰, Camille Ferdenzi^{25,0}, Evelyn V. Brindha⁴⁶, Aytuq Altundaq⁴⁷, Alberto Macchi⁴⁸, Alexia Nunez-Parra⁴⁹, Zara M. Patel⁵⁰, Sébastien Fiorucci⁸, Carl M. Philpott^{51,0}, Barry C. Smith^{52,0}, Johan N. Lundström^{30,53,0}, Carla Mucignat⁵⁴, Jane K. Parker⁵⁵, Mirjam van den Brink⁵⁶, Michael Schmuker²³, Florian Ph. S. Fischmeister⁵⁷, Thomas Heinbockel⁵⁸, Vonnie D. C. Shields⁵⁹. Farhoud Faraji60, Enrique Santamaría61, William E.A. Fredborg62, Gabriella Morini⁶³, Jonas K. Olofsson^{62,6}, Maryam Jalessi⁶⁴, Noam Karni⁶⁵, Anna D'Errico⁶⁶, Rafieh Alizadeh^{67,0}, Robert Pellegrino⁶⁸, Pablo Meyer⁶⁹, Caroline Huart⁷⁰, Ben Chen⁷¹, Graciela M. Soler⁷², Mohammed K. Alwashahi73, Antje Welge-Lüssen74, Jessica Freiherr75,0, Jasper H. B. de Groot⁷⁶, Hadar Klein⁴, Masako Okamoto⁷⁷, Preet Bano Singh⁷⁸, Julien W. Hsieh⁷⁹, GCCR Group Author[†], Danielle R. Reed³⁰, Thomas Hummel⁸⁰, Steven D. Munger^{81,82}, and John E. Hayes 6,0

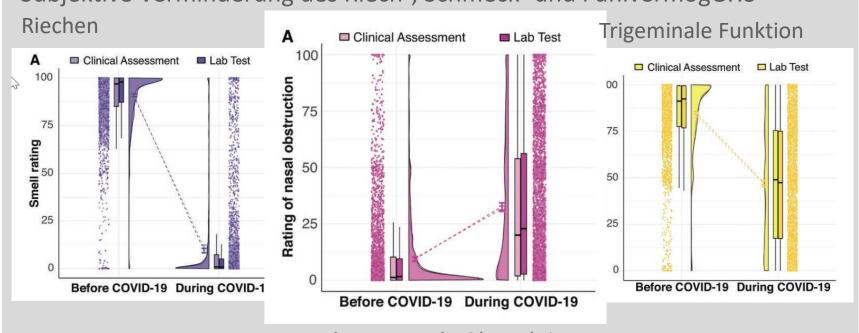
Members of GCCR Consortium



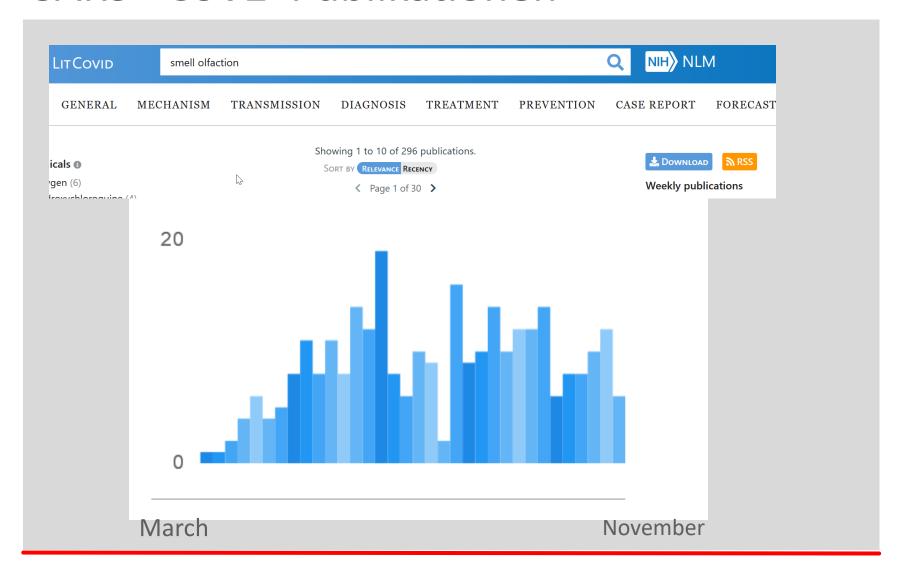
SARS-CoV2

Datensammlung mit Hilfe eines Fragebogens in 10 Sprachen

England, Frankreich, Deutschland, Italien, Japan, Candada, Norwegen, Spanien, Schweden und Türkei


Zeitspanne: 3 Wochen im April 2020

SARS-CoV2



moderate nasale Obstruktion

Kein Unterschied zwischen klinischer und Labor bestätigter Diagnosegruppe Shortcomings: kulturelle Unterschiede, keine Differenzierung Hyp-/Anosmie

SARS - CoV2 Publikationen

SARS - CoV2 Prävalenz

Systematischer Review / Metaanalyse I

Received: 21 April 2020 Revised: 4 July 2020 Accepted: 21 July 2020

DOI: 10.1111/coa.13620

SYSTEMATIC REVIEW AND META-ANALYSES

WILEY

Is loss of sense of smell a diagnostic marker in COVID-19: A systematic review and meta-analysis

Lead Author	n COVID-19 positive	N with OD	Percentage with OD	Average age with OD	Proportion Female	Setting	Location
C Menni	579	344	59%	41	69%	Outpatient based	UK based
J Lechian	417	357	86%	No data	No data	Inpatient and Outpatient	Belgium, Spain, France, Italy
C Yan	59	40	68%	No data	No data	Outpatient based	USA
ST Moein	60	58	97%	47	33%	Inpatient	Iran
L Mao	214	11	5%	No data	No data	Inpatient	China
Totals	1329	819	62% prevaler	nce of OD in COV	ID + ve populat	ion	

Abbreviation: OD, olfactory dysfunction.

n= 1329 Pat., olfaktorische Dysfunktion: 62.0%

Juli 2020

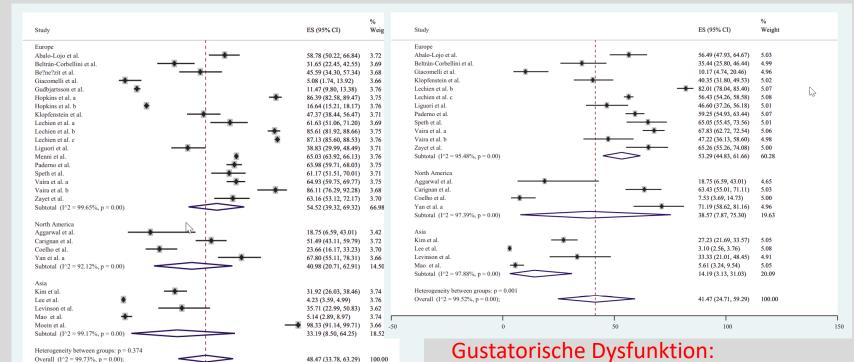
SARS-CoV2

Systematischer Review / Metaanalyse II

First author	Study design	Country	Quality ^a	Sample size	Instrument used
Abalo-Lojo ⁵	Cross-sectional	Spain	Good	131	Self-reporting questionnaire
Aggarwal ⁶	Retrospective	United States	Good	16	Questionnaire
Beltrán-Corbellini ⁷	Case-control	Spain	Good	79	Questionnaire
Bénézit ³⁹	Cross-sectional	France	Good	68	Web-based questionnaire
Carignan ⁸	Case-control	Canada	Good	134	Telephone interview questionnaire
Coelho ⁹	Cross-sectional	United States	Good	93	Web-based survey
Giacomelli ⁴⁸	Cross-sectional	Italy	Good	59	Questionnaire
Gudbjartsson ⁴⁰	Cross-sectional	Iceland	Good	1221	Questionnaire
Hopkins ¹²	Cross-sectional	United Kingdom	Good	382	Online survey
Hopkins ⁴¹	Cross-sectional	United Kingdom	Good	2428	Survey
Kim ¹³	Cross-sectional	South Korea	Good	213	Questionnaire based survey
Klopfenstein 14	Retrospective	France	Fair	114	Medical files
Lechien ⁴²	Cross-sectional	France	Good	86	Nutritional health and nutritional examination survey
Lechien ⁴³	Cohort	TFrance	Good	417	Questionnaire
Lechien ⁴⁴	Cohort	France	Good	2013	Sniffin' sticks and questionnaire
Lee ¹⁷	Cross-sectional	South Korea	Good	3191	Telephone interview
Levinson ⁴⁵	Cross-sectional	Israel	Good	42	Questionnaire and phone interview
Liguori ¹⁹	Cross-sectional	Italy	Good	103	Anamnestic interview
Liu ²⁰	Cohort	Taiwan	Good	321	Open access data
Mao ²¹	Cross-sectional	China	Good	214	Electronic medical records
Menni ²²	Cross-sectional	United Kingdom	Good	7178	Smartphone based app
Merza ²³	Cross-sectional	Iraq	Fair	15	Questionnaire
Moein ²⁴	Cohort	Iraq	Good	60	Pennsylvania Smell Identification Test
Paderno ⁴⁶	Cross-sectional	Italy	Good	508	Survey-based questionnaire
Speth ²⁶	Cross-sectional	Switzerland	Good	103	Telephone questionnaire
Spinato ²⁷	Cohort	Italy	Good	202	Ouestionnaire
Vaira ⁴⁷	Cohort	Italy	Good	345	Connecticut Chemosensory Clinical
		,			Research Center Orthonasal Olfaction Tes
Vaira ⁴⁹	Cross-sectional	Italy	Good	72	Connecticut Chemosensory Clinical Research Center Orthonasal Olfaction Tes
Vaira ²⁹	Cross-sectional	Italy	Good	320	Medical records
Yan ⁵⁰	Case-control	United States	Good	59	Internet-based platform
Yan ³¹	Cross-sectional	United States	Good	169	Self-reported questionnaire
Zayet ³²	Retrospective	France	Fair	95	Questionnaire

MERICAN ACADEMY OF OTOLARYNGOLOGY-IEAD AND NECK SURGERY

NDATION


n 1−13 thors 2020 use guidelines: om/journals-permissions 177/2473974×20957975 open.org

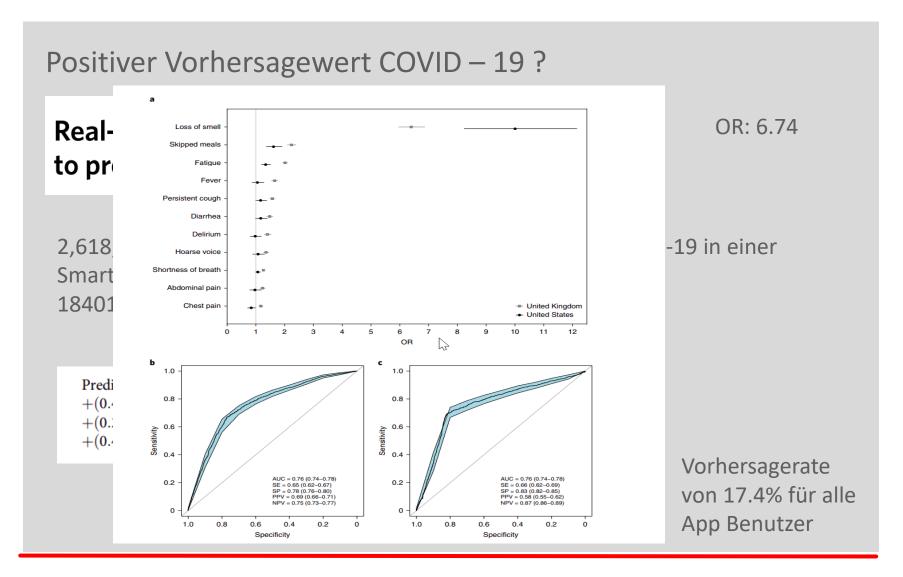
August 2020

SARS-CoV2

Systematischer Review / Metaanalye II

41.2% (95% CI 24.71% -59.29%)

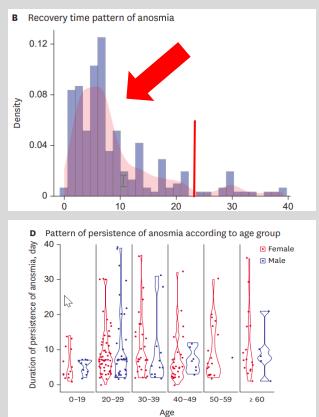
48.47 (33.78, 63.29) 100.00

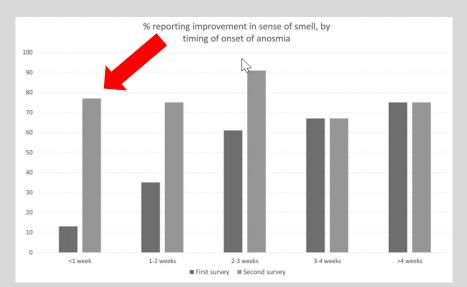

Olfaktorische Dysfunktion

Overall $(I^2 = 99.73\%, p = 0.00)$;

August 2020

SARS - CoV2

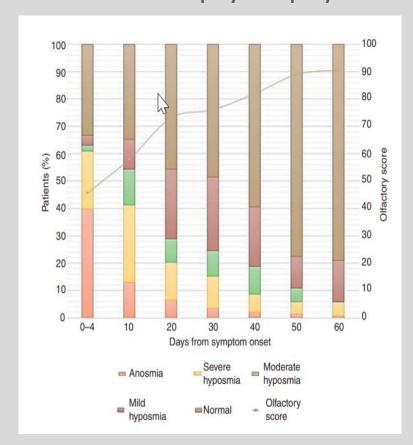


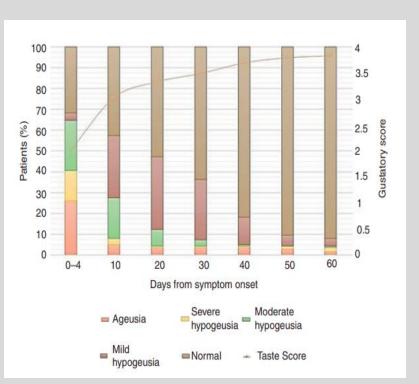

SARS - CoV2 Prognose?

Erholung der olfaktorischen Funktion

Durchschnittliche Erholung: zwischen 7 und 20 Tagen

Median: 7 Tage, meistens innerhalb von 20 Tagen Lee et al, 3191 pat. (survey)


Jüngere Personen brauchen etwas länger


79% nach 7 Tagen
Hopkins et al, 382 pat. (survey)

SARS - CoV2 Prognose ?

Wiederholte psychophysische Messung n = 138 Pat)

80% haben wieder ein normales Riechvermögen nach 2 Mt.

Vaira et al, 2020

SARS - CoV2 Therapie

Therapie?

	Study Type	Study Population	Results
Olfactory Training			
Al Aïn et al, ³¹ 2019	Prospective, controlled	Healthy participants (n = 12)	Intensive, modified OT results in improved olfactory function and increased cortical thickness in olfactory-eloquent regions
Hummel et al, ³² 2018	Prospective, controlled	Postinfectious olfactory loss, idiopathic smell loss (n = 23)	EOG responses more frequently obtained following OT
Langdon et al, ³³ 2018	Prospective, controlled	Posttraumatic olfactory dysfunction (n = 21)	OT significantly improved odor threshold score but not BAST-24 score or subjective smell function
Oleszkiewicz et al, ³⁴ 2017	Prospective, controlled	Postinfectious, idiopathic olfactory dysfunction (n = 108)	OT with odor mixtures or alternating odors does not significantly improve function compared with single-molecule odor training
A Review			
AREVIEW			
		, DOHNS Thomas Hummel, MD	2019
		, DOHNS Thomas Hummel, MD FOSTIMECTIONS OFFACTORY 1055 (n = 39)	2019 Longer ouration (202 weeks) increased effectiveness of training
Katherine L. Whitcroft,	BSc, MBChB (Hons), MRCS	POSIBILITECTIONS OFFICER (1975)	
Katherine L. Whitcroft,	BSc, MBChB (Hons), MRCS	rostiliectious otractory toss (n = 39) Posttraumatic and postinfectious	Longer unration (252 weeks) increased effectiveness of training

SARS - CoV2 Therapie

+ Vitamin A Nasentropfen

Hummel et al, 2017

+ Budenosid Spülungen?

Budesonide irrigation with olfactory training improves outcomes compared with olfactory training alone in patients with olfactory loss

Teresa P. Nguyen, BS and Zara M. Patel, MD

Natriumcitrat?

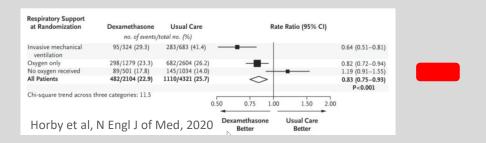
The effect of intranasal sodium citrate on olfaction in post-infectious loss: results from a prospective, placebo-controlled trial in 49 patients

Whitcroft, K.L., *†‡a Ezzat, M., *a Cuevas, M., * Andrews, P.†‡ & Hummel, T.*

Intranasal sodium citrate solution improves olfaction in Ipost-viral hyposmia*

K.L. Whitcroft^{1#}, C. Merkonidis^{1,2#}, M. Cuevas¹, A. Haehner¹, C. Philpott^{3,4}, T. Hummel¹

Rhinology 54: 368-373, 2016 DOI:10.4193/Rhino16.054 statistisch, aber nicht klinisch signifikant



SARS - CoV2 Therapie

Systemische Steroide?

positiver Effekt bei Schwererkrankten, aber möglicherweise ansonsten schädigend:

Evidenz: schwach!

Keine Empfehlung dafür innerhalb der ersten Wochen!

https://www.bbc.com/news/health-54027269

SARS - CoV2 Zusasmmenfassung

- Prävalenz von Riechstörungen: 50-60%, zudem oft auch Schmeck- und trigeminale Störungen
- Meistens rasche Erholung innerhalb von 7-20 Tagen,
 Schmeckstörungen erholen sich schneller und weitgehender
- Etwa 10 (- 20?)% der Störungen dauern mehr 2 Monate
- Therapeutische Option: Riechtraining, Vit A Tropfen (korrekt appliziert)
- Systemische Steroide: CAVE!

